

Erratum

Airways pharmacology of DNK333A, a dual NK₁/NK₂ neurokinin receptor antagonist

C.A. Lewis, K. Hoshiko, H.-J. Pfannkuche, H. Ball,
N. Subramanian, M. Gerspacher & J.R. Fozard

British Journal of Pharmacology (2002) **134**, Proceedings
Supplement University College Dublin 69P

The British Pharmacological Society wish to apologise that in the above Supplement the correct abstract for 69P was omitted.

Abstract 69P appears below.

AIRWAYS PHARMACOLOGY OF DNK333A, A DUAL NK₁/NK₂ NEUROKININ RECEPTOR ANTAGONIST.

C.A. Lewis, K. Hoshiko*, H.-J. Pfannkuche**, H. Ball**, N. Subramanian**, M. Gerspacher**, J.R. Fozard**. Novartis Horsham Research Centre, UK *Novartis Pharma K.K. Tsukuba Research Inst., J, **Research Dept., Novartis Pharma AG, Basel, CH.

The tachykinins, substance P (SP) and neurokinin A (NKA) produce their biological effects through NK₁ and/or NK₂ receptors and have been implicated in respiratory disease (Joos et al., 2000). We here describe the airways pharmacology of DNK333A [((1R,3R,2E)-N-[3,4-dichlorobenzyl])-4-[(hexahydro-2-oxo-1H-azepin-3-yl)amino]-N-methyl-3,5-bis(trifluoromethyl)benzamide], a novel dual NK₁/NK₂ receptor antagonist.

Affinities to cloned human NK₁, NK₂ and NK₃ receptors expressed in CHO cells were measured in radioligand binding assays using ³H-Sar⁹SP, ¹²⁵I-NKA and ¹²⁵I-MePhe⁷NKB, respectively. Tracheal rings from male Dunkin Hartley (DH) guinea pigs were set up for recording isotonic tension changes. DNK333A was incubated with the tissues for 15 min prior to Sar⁹Met(O₂)¹¹-SP or (βAla⁸)-NKA(4-10) being applied cumulatively. Male DH guinea pigs (400-550g) were anaesthetised (phenobarbitone 100 mgkg⁻¹ and pentobarbitone 30 mgkg⁻¹ i.p.), ventilated and airway resistance was measured. Bronchoconstrictor dose-response curves were constructed to Sar⁹SP or (Ala⁵,β-Ala⁸)-α-NKA(4-10) given i.v. In other experiments, the nasopharynx was perfused (0.25 mlmin⁻¹) with saline or SP (10⁻⁴M 10 min) and the concentration of Evans blue dye, injected i.v. 10 min prior to SP challenge measured, in the perfusate by spectrophotometry.

Female squirrel monkeys (500-800g) were anaesthetised (Saffan™ 3.6 mgkg⁻¹ and 0.6 mgkg⁻¹ valium™ i.m.), intubated, but spontaneously breathing and airways resistance measured before and after aerosolised (β-ala⁸)-NKA (1 mM for 5 min). Mean values ± s.e. mean are presented and significance is defined by p values < 0.05 (Mann Whitney Rank sum test).

DNK333A bound with high and similar affinities to human NK₁ (pKi, 7.90 ± 0.12, n=3) and NK₂ (pKi, 8.02 ± 0.02, n=4) receptors and showed selectivity over NK₃ (pKi, 6.87 ± 0.05, n=3). In guinea pig trachea *in vitro*, DNK333A induced concentration-dependent, surmountable blockade of constrictor responses induced by selective NK₁ (pKB, 7.93 ± 0.1, n=3) and NK₂ (pKB, 7.27 ± 0.1, n=4) agonists. In guinea pigs, DNK333A (-2h, p.o., n=4-5) significantly shifted the bronchoconstrictor dose-response curve by 21.8- (3 mgkg⁻¹) and 6.8-fold (10 mgkg⁻¹) for the NK₁ and NK₂ receptor agonists, respectively and had a duration of action of up to 12 h (10 mgkg⁻¹ p.o.). Also in guinea pigs, DNK333A (0.3-0.75 mgkg⁻¹, p.o., -2 h, n=10) suppressed NK₁ receptor mediated nasal extravasation induced by SP (ED₅₀, 0.07 mgkg⁻¹) and showed a duration of action of > 8 h following 1 mgkg⁻¹ p.o. In squirrel monkeys, DNK333A (1-10 mgkg⁻¹ p.o., -2 h, n=12) inhibited dose-dependently the bronchoconstrictor response to aerosolised (β-ala⁸)-NKA (ED₅₀, 1 mgkg⁻¹).

These data establish DNK333A as a potent, dual NK₁/NK₂ receptor antagonist *in vitro* and *in vivo*. The potency and long duration of action renders DNK333A particularly suitable for exploring the role of tachykinins in respiratory disease.

Joos G.F. et al. (2000) *Allergy* 55 (4) 321-337